
CORBA®

with Delphi™

by Bob Swart

VisiBroker® 3.3 for Delphi™ 5
An introduction to CORBA® is followed by the design of

a practical, real-world CORBA application implemented in

Delphi™ 5 Enterprise. The CORBA application acts as a

multi-user electronic personal diary that can be used to

check other people's diaries, make appointments, and so

forth. This can be useful in corporate environments

where employees are not always working in the same

(physical) office.

We'll implement the CORBA Server in Delphi, followed

by a CORBA Client in Delphi using three different

communication techniques: the Type Library, Dynamic

Interface Invocation (DII) and the IDL2PAS that came

with VisiBroker® 3.3 for Delphi 5.

Table of Contents
Introduction 1

CORBA® 2

Delphi™ 5 Enterprise 2

Delphi 5 for CORBA Server 3

CORBA Clients with Delphi 5 4

VisiBroker 3.3 for Delphi 5 7

Conclusion 11

VisiBr o k er®

VisiBroker ®

2

CORBA®

CORBA stands for Common Object Request Broker

Architecture. CORBA is platform-independent like Java™ ,

and language-independent like COM - truly the best of

the best. CORBA is a communication protocol between a

client and a server. Communication between these two is

handled by an ORB (Object Request Broker) and IIOP

(Internet InterORB Protocol).

Before a client and a server can communicate with each

other, a "contract" must be made that specifies the

functionality that will be implemented by the server and

available (to call) for the client. Such a contract is defined

using IDL (Interface Definition Language). With IDL, you

can specify a module, which consists of one or more

interfaces, each of which can contain methods and

exceptions, but more about exceptions later.

Once the IDL contains the interface contract, it still

consists of a platform-independent and language-

independent specification. The IDL definition can then be

translated into platform-specific and language-specific

parts, using for example, an IDL2JAVA, IDL2CPP or

IDL2PAS.

The IDL is translated into Server Skeletons and Client

Stubs. The Server Skeleton defines the module/interface

and methods that the server needs to implement, while

the client stubs define the module/interface methods that

the client can call.

The best feature of CORBA is, again, the fact that it is a

cross-platform language-independent communication

protocol. Specifically, the client and server do not need to

run on the same platform, nor do they need to be

implemented in the same language. What makes all this

work is the ORB which passes a request for a method call

on from the client to the server. The real work is done

when passing the arguments (and values) from one place

to another. In order to make sure that arguments values

are correctly passed on, they are transferred in a platform-

independent, language-independent format. When the

client calls a method passing an argument, then the

argument is converted to an ORB-specific format (this is

called marshalling). When the server receives a call, the

ORB-specific format is converted back to the correct

values which are native to the platform and language of

the server (this is called unmarshalling). The same thing

happens when the server passes the results back to the

client.

All in all, CORBA is a powerful cross-platform and cross-

language communication protocol that can be used to

connect many clients to a single server. In this paper we'll

explore the way in which Delphi 5 supports CORBA,

using VisiBroker 3.3 for Delphi 5.

Delphi™ 5 Enterprise
Using Delphi 5 Enterprise, you can create a CORBA Data

Module or a plain CORBA Object (both Wizards can be

found in the Multi-tier tab of the Object Repository). In

this paper, I'll focus on the plain CORBA Object only,

which is the one that can act as a CORBA server (object)

for cross-platform cross-language CORBA clients.

The example that I've announced in the introduction of

this paper is based on a real-world, multi-user personal

diary (a long description for an "on-line diary", wouldn't

you say?). We've been using an application similar to the

one I'm describing in this paper for over a year now.

Unfortunately, I have neither the space, nor the time to

cover all the implementation details here, so I'll stick to

the CORBA communication details only (I'm sure you'll

understand, since VisiBroker 3.3 for Delphi 5 is the topic

for this paper).

The on-line diary contains information for employees and

their daily activities (on an hourly basis for example). The

central server would contain (a database with) all on-line

diaries, and the remote clients can access this central

server to make appointments with each other. The power

of CORBA ensures that nobody really needs to care how

or where the server is implemented (as long as they can

VisiBroker ®

3

connect to it), nor does the server need to care where or

how the clients are implemented. In this case the server is

implemented in Delphi 5 Enterprise. Since this is a Delphi

paper, the client will too, but you'll see a number of

techniques that will also (or especially) be useful on

"foreign" servers or "foreign" clients.

Delphi 5 for CORBA Server
To create a Delphi 5 for CORBA Server application, you

need to start a new application (with a main form that

can act as "identifier" to show that the server is up and

running). To this application, which I've called DiarySrv,

you need to add a Corba Object (from the Multi-tier page

of the Object Repository).

Inside the CORBA Object Wizard, you need to specify the

Class Name of the CORBA object. This will be the name

of the interface (with an I-prefix), as well as the

TCorbaImplementation descendant class (with the T-

prefix), that your CORBA application will create and use.

The interface is the important part here: this is where you

can specify the methods that the server needs to

implement, and that the client can call. In Delphi 5,

specifying these interface methods is done using the Type

Library. This gives CORBA a bit of a COM taste, but it's

not truly COM (it's only using interfaces behind the scene

- the actual communication is still done using CORBA).

Specify a class name here (such as CorbaDiaryServer),

leave the Instancing and Threading-model options at their

default values, and hit OK.

Type Library Editor

After you've created the new CORBA Object, you must

start the Type Library Editor to specify the interface

definition of the CORBA server. In this case, I need to

specify a single method called Meeting, with four

arguments: Names, Date, Time and Duration. Names is a

PChar (LPSTR) that contains the (unique specified) names

of the people that need to be present at that meeting (a

hence it would be nice if they were to be automatically

notified). Date and Time are in the YYYYMMDD and

HHMM formats, which makes them sortable! Finally,

Duration specifies the number of minutes the meeting is

supposed to last (note: 24*60 = 1440 minutes make up an

entire day).

You should hit the "Refresh Implementation" button to

make sure the Delphi unit for the CorbaDiaryServer

contains this (still empty) method Meeting. Once the

method Meeting is available, you can implement it

anyway you want (in the paper, I'll just e-mail it to the

office manager, who then has to make sure the

appointments are made - but you're free to make a more

sophisticated implementation, of course).

Type Library Editor Limitations

While the Type Library Editor is a convenient way for

Delphi developers to specify the interface of a (CORBA or

COM) object, there are a number of limitations when

using the Type Library Editor. It just doesn't support

everything CORBA has to offer, like structured types

VisiBroker ®

4

(records) or CORBA exceptions. This may not be a big

deal for the average Delphi developer, but for a CORBA

developer it is a big deal. Later in this paper, I'll show

you VisiBroker 3.3 for Delphi 5 , which does not have

these limitations.

Exporting IDL

Apart from implementing the interface definition, you

should also export, it in order to make sure that potential

CORBA clients know which method(s) are available, and

which arguments direct or point to these methods.

Although you've used the Type Library Editor so far, you

haven't really seen IDL, yet (remember the theory part at

the beginning of this paper?).

While still in the Type Library Editor, you must also

export the type library definition as CORBA IDL, so that

any CORBA client can use this IDL to generate client

stubs. Simply select the "Export to CORBA IDL" using the

last button on the right of the Type Library Editor. This

resulting IDL file can be used by CORBA clients, for

example, implemented using JBuilder™ , C++Builder™

or Delphi.

The IDL file for the module DiarySrv with example

interface ICorbaDiaryServer (and method Meeting) should

look similar to this:

 module DiarySrv

 {

 interface ICorbaDiaryServer

 {

 void Meeting(in string Names,

 in long Date, // yyyymmdd

 in long Time, // hhmm

 in long Duration);

 };

 interface CorbaDiaryServerFactory

 {

 ICorbaDiaryServer CreateInstance(in string

InstanceName);

 };

 };

Now, close the Type Library Editor and return to the

CORBA object implementation unit. This is the time to

implement the Meeting method inside your

TCorbaDiaryServer class. Once you're done that, you can

compile and test the CORBA Server.

Running CORBA Server

Before you can run the CORBA Server, you must first

make sure the (VisiBroker) Smart Agent is running. You

can find the Smart Agent in your Delphi program group,

or as osagent.exe in your VBROKER\BIN directory. The

Smart Agent can be seen as the telephone service;

without it, you cannot reach the ORB or send CORBA

messages from one place to another.

When the Smart Agent runs (on at least one machine in

the subnet), you can run the CORBA Server. The server

will "register" itself with the Smart Agent, and from that

moment on will wait until you terminate it again, or a call

from CORBA client comes in (dispatched by the Smart

Agent). It is time to leave the CORBA Server alone, and

start working on CORBA clients to connect to it.

CORBA Clients with Delphi 5
There are three different ways to create a CORBA Client

using Delphi 5. The oldest way is using the Type Library

import unit (provided a CORBA Server was written in

Delphi 5 that used a Type Library), and use that to create

a (CORBA) object instance and call its methods. Note that

this only works when both the CORBA client and server

are written in Delphi, so I don't consider this "pure"

CORBA (but you'll see how it works anyway, because

you do get a great deal of design-time support).

The second way to create a CORBA client, when you

have an IDL file and no Type Library at your disposal, is

by registering the IDL file inside the Interface Repository,

VisiBroker ®

5

and using Dynamic Interface Invocation to create an

object and call its methods. This technique is very flexible

(when the interface changes, your client can dynamically

adapt to it), but also harder to implement. Apart from

that, due to the dynamic nature of the interface, there is

hardly any design-time support.

The third and without a doubt best way to create CORBA

clients in Delphi, is by using an add-on tool available for

Delphi 5 Enterprise called VisiBroker 3.3 for Delphi 5 .

This add-on tool, which can be downloaded from the

Borland website , www.borland.com , contains an IDL2PAS

compiler that produces client stubs from IDL files. During

the session, I’ve been using a prerelease version of

VisiBroker 3.3 for Kelphi5, which is now available the

release edition). However, the techniques shown will be

quite useful to CORBA developers...

1. CORBA Client using Type Library

The easiest way to connect a Delphi for CORBA Client to

an existing Delphi for CORBA Server (that was made

using the Type Library Editor), is by using the Type

Library Import unit. Start a new project and add the Type

Library import unit from the CORBA Server to your

CORBA Client project. The import unit contains the

factory constructor that you need to call in order to create

an instance of the CORBA server. It also contains the full

definitions of the methods that belong to the interfaces

(so you get full design-time support including

CodeInsight™ help for arguments). After you've created

the CORBA server, you can call its methods as if they

were local methods. For example, to call the Meeting

method, you need to write the following code:

 procedure TCorbaDiaryClient.TypeLibrary(Sender:

TObject);

 var

 CorbaDiaryServer: ICorbaDiaryServer;

 begin

 CorbaDiaryServer :=

TCorbaDiaryServerCorbaFactory.CreateInstance('CorbaDia

ryServer');

 CorbaDiaryServer.Meeting('Bob

Swart',20000925,1715,75);

 CorbaDiaryServer := nil

 end;

Before you can test this, you must make sure the Smart

Agent is running, then start the CORBA server, followed

by your CORBA client. As long as both the CORBA Server

and Client are written in Delphi, you can rely on the

Type Library (and import unit) to connect them to each

other. However, the earlier mentioned limitations still

apply: no support for records or CORBA exceptions.

If the CORBA Server is written in another environment

(like C++ or Java), then there's no Type Library import

unit, and you need to use one of the following

techniques to write a CORBA Client in Delphi.

2. CORBA Client using Dynamic Interface Invocation (DII)

Although I will only be using Delphi 5 Enterprise during

this paper, let's assume just for the sake of argument that

the CORBA Server is written in some "foreign"

environment and/or you do not have the Type Library

(import unit) available when you start to write the

CORBA Client in Delphi 5. Instead, you start with an IDL

file that defines the interface that the CORBA Server

implements and is available for your CORBA Client to

call. Some people have imported an IDL definition in the

"text" page of the Type Library and hit the "refresh"

button to generate the corresponding Delphi interface,

but I won't be doing that, since I've already explained

that the Delphi Type Library does not contain full support

for the CORBA IDL (so this might or might not work,

depending on the IDL features that are used).

The Interface Repository

Since Delphi (out-of-the-box) can't directly use the IDL

we've just written, you must use a different technique.

The CORBA client will dynamically communicate with a

VisiBroker ®

6

repository that stores available interfaces. This repository

is called the Interface Repository. It needs to be

connected to an ORB, so it can connect the CORBA

Server that implements this interface (method) with the

CORBA client that requests this interface (method). The

technique of connecting like this is also known as "late

binding". If you "load" an interface definition (IDL file)

inside the Object Repositor, then it is available for use by

all CORBA clients that can talk to the Interface Repository

(which isn't difficult, as you'll see in a minute).

First, let's start the Interface Repository and load the

"DiarySrv.idl" file in it. This can be done by the following

command-line:

 start irep drbob42 DiarySrv.idl

Keep in mind that the VisiBroker Smart Agent must be

running on the same machine on which the Interface

Repository is started. This will start a GUI application

where you can even do some simple searching on the

available IDLs.

The Delphi client is now able to access the IDL and

invoke methods dynamically.

Dynamic Interface Invocation (DII)

The code needed to dynamically obtain an object

reference uses the OrbBind method, after which you can

call any method from this CORBA server object reference.

Note that method calls are now case-sensitive (and you

won't get any design-time support using CodeInsight):

 procedure

TCorbaDiaryClient.DynamicInterfaceInvocation(Sender:

TObject);

 var

 Factory: TAny;

 CorbaDiaryServer: TAny;

 begin

 Factory :=

Orb.Bind('IDL:DiarySrv/CorbaDiaryServerFactory:1.0');

 CorbaDiaryServer :=

Factory.CreateInstance('CorbaDiaryServer');

 CorbaDiaryServer.Meeting('Bob

Swart',20000925,1715,75);

 CorbaDiaryServer := unassigned;

 Factory := unassigned

 end;

DII is a powerful way to talk to CORBA servers if

interfaces change often and the names of the methods

remain the same. You don't need to recompile the client,

or distribute the IDL file to be able to use the interfaces -

as long as the Interface Repository can be used.

However, the downside for Delphi developers is the lack

of design-time support (you won't get error messages

until it's too late: when the application is running). For

that and more, you need to look at the third way to write

CORBA Clients in Delphi, using IDL2PAS.

VisiBroker ®

7

3. CORBA Client using IDL2PAS

The first public edition of VisiBroker 3.3 for Delphi 5

Enterprise shipped at the end of 1999. It contained an

IDL2PAS batch file, some examples and documentation

(including a VisiBroker 3.3 for Pascal Reference Guide in

PDF format).

The IDL2PAS batch file "compiles" a CORBA IDL file, like

DiarySrv.idl, into DiarySrv_i.pas and DirarySrv_c.pas. The

DiarySrv_i.pas file will get the interface definition, while

the DiarySrv_c.pas file will get the client stub definitions.

As you may have noted, there was no support for server

skeletons, which would have been ended up in a _s or

_impl file. During the paper in London, I'll show the

latest version of IDL2PAS that also generates server

skeletons.

Using the generated DiarySrv_i.pas and DiarySrv_c.pas

files with the new CORBA and OrbPas30 units (that also

come with VisiBroker 3.3 for Delphi 5), you can now

statically bind to any CORBA server. To do so, you must

first create the Factory of type CorbaDiaryServerFactory

(defined in the DiarySrv_c.pas unit), by calling

TCorbaDiaryServerFactoryHelper.Bind with

CorbaDiaryServer as argument. With this Factory instance,

you can create the CORBA server itself by calling the

CreateInstance method with CorbaDiaryServer as

argument.

 uses

 CORBA, OrbPas30, DiarySrv_i, DiarySrv_c;

 procedure TCorbaDiaryClient.IDL2PAS(Sender: TObject);

 var

 Factory: CorbaDiaryServerFactory;

 CorbaDiaryServer: ICorbaDiaryServer;

 begin

 Factory :=

TCorbaDiaryServerFactoryHelper.Bind('CorbaDiaryServer')

;

 CorbaDiaryServer :=

Factory.CreateInstance('CorbaDiaryServer');

 CorbaDiaryServer.Meeting('Bob

Swart',20000925,1715,75);

 CorbaDiaryServer := nil;

 Factory := nil

 end;

All three approaches (Type Library import unit, dynamic

interface invocation and IDL-2-PAS binding) have the

same CorbaDiaryServerMeeting call. The differences are

in the way that you create an instance of the CORBA

server itself. One big difference is the fact that the Type

Library import unit method only works with CORBA

Servers for Delphi. A second big difference is the fact that

when using Dynamic Interface Invocation (DII), you lack

design-time support (because the CORBA Server itself is

of type TAny). Finally, the IDL-2-PAS offers the ability to

bind to any CORBA server, yet gives you design-time

support as well. Add to that the the other enhancements

that you find in VisiBroker 3.3 for Delphi 5, and you'll

understand why this is my favorite technique.

VisiBroker 3.3 for Delphi 5
During the session, I've been using a prerelease version

of VisiBroker 3.3 for Delphi 5 (with special permission

from Borland's Ben Riga), which is now available (the

release edition). However, the techniques shown will be

quite useful to CORBA developers, even if they still use

the first (original) public edition of VisiBroker 3.3 for

Delphi 5.

CORBA structs

Let's start with a a CORBA feature that is supported by

the original IDL-2-PAS - and not available when using the

Type Library import unit. I'm talking about the support

for CORBA structs, which are a bit similar to plain

ObjectPascal record types (to be honest, CORBA structs

are a lot more powerful since they can contain recursive

definitions, but that's a story for another day). To extend

your DiarySrv example, you can combine the Date and

VisiBroker ®

8

Time integer values in a single structure DateTime

defined as follows in IDL (note that I merged the Date

and Time arguments to the Meeting method as well):

 module DiarySrv

 {

 struct DateTime {

 long Date;

 long Time;

 };

 interface ICorbaDiaryServer

 {

 void Meeting(in string Names,

 in DateTime DayTime,

 in long Duration);

 };

 interface CorbaDiaryServerFactory

 {

 ICorbaDiaryServer CreateInstance(in string

InstanceName);

 };

 };

Even using the first edition of IDL2PAS, the resulting

struct DateTime can be found inside both the

DiarySrv_i.pas and the DiarySrv_c.pas generated files. The

generated DiarySrv_i.pas file contains the interface

definition of DateTime:

 type

 DateTime = interface

 ['{5070DDE7-BD49-0C52-68CE-EF2214199CB8}']

 { Accessor and mutator methods for IDL Structure

Elements. }

 function _get_Date : Integer;

 procedure _set_Date (const Date : Integer);

 function _get_Time : Integer;

 procedure _set_Time (const Time : Integer);

 { Properties representing IDL Structure Elements. }

 property Date : Integer read _get_Date write

_set_Date;

 property Time : Integer read _get_Time write

_set_Time;

 end;

As with all Delphi interfaces, this is only a definition of

functionality; the implementation must be made

someplace else (inside, the generated DiarySrv_c.pas file):

 type

 TDateTime = class (TInterfacedObject,

DiarySrv_i.DateTime)

 private

 Date : Integer;

 Time : Integer;

 constructor Create; overload;

 public

 function _get_Date : Integer; virtual;

 procedure _set_Date (const _value : Integer);

virtual;

 function _get_Time : Integer; virtual;

 procedure _set_Time (const _value : Integer);

virtual;

 constructor Create (const Date : Integer;

 const Time : Integer); overload;

 end;

In order to use the TDataTime type, you only have to

create an instance of it, at which time you can pass the

Date and Time values to the Create constuctor, or set

their values using the _set_Date and _set_Time methods

later. Clients receiving a TDataTime argument can

obviously use the _get_Date and _get_Time functions to

obtains their values again. It sounds really easy, and it is.

For those of you interested in where the actual

marshalling is happening, take a look at the

TDateTimeHelper class (defined in the same

DiarySrv_c.pas file) that is doing a lot of the hard work

behind the scenes (including marshalling the individual

record fields).

VisiBroker ®

9

CORBA Exceptions

It's nice to have support for CORBA structs (this was

available in the original edition of VisiBroker 3.3 for

Delphi 5), but what about error handling and recovery?

Delphi 5 has no built-in support for CORBA exceptions.

And even the original VisiBroker 3.3 for Delphi 5 only

supports client-side CORBA exceptions. Only client-side?

Yes, and that means that the CORBA client is able to

"catch" (or handle) exceptions using a try-except block,

but the CORBA server is not (yet) able to raise any

CORBA exceptions. This includes standard as well as

custom CORBA exceptions. The next edition of

VisiBroker 3.3 for Delphi 5 actually supports CORBA

server-side exceptions as well (great news!), so let's

examine CORBA exceptions in a bit more detail.

A CORBA exception is like a struct definition in IDL. You

can add data (fields), but no functionality (no methods).

Apart from that, you cannot built an exception hierarchy,

as structs cannot be derived from other structs (for me,

this is one of the few minor disappointments when using

CORBA).

To extend the DiarySrv example with CORBA exceptions,

consider a situation where I try to setup a meeting using

the Meeting method, only to find that there was no way

to signal that a meeting is impossible to schedule. It

would be nice to get a notification of such an event by

raising an exception (containing useful feedback

information, if possible). You can define an

"MeetingImpossible" exception, which can be raised if

one or more of the people can't attend the meeting (or if

the Date/Time is invalid). Using IDL, you can define an

exception MeetingImpossible, including a property called

Reason, and extend the DiarySrv.idl until we get the final

version:

 module DiarySrv

 {

 exception MeetingImpossible

 {

 string Reason;

 };

 struct DateTime {

 long Date;

 long Time;

 };

 interface ICorbaDiaryServer

 {

 void Meeting(in string Names,

 in DateTime DayTime,

 in long Duration)

 raises (MeetingImpossible);

 };

 interface CorbaDiaryServerFactory

 {

 ICorbaDiaryServer CreateInstance(in string

InstanceName);

 };

 };

In the above example, the custom CORBA exception

MeetingImpossible is defined outside the

ICorbaDiaryServer interface. It could also have been

defined inside the ICorbaDiaryServer interface (resulting

in a "local" exception - visible to the ICorbaDiaryServer

only - which results in a slightly different generated class

name EICorbaDiaryServer_MeetingImpossible).

VisiBroker 3.3 for Delphi 5 supports all CORBA standard

exceptions already. What we've been working on just

now is known as a CORBA custom exception. Both built-

in and custom CORBA exceptions are mapped by the

IDL2PAS compiler to an ObjectPascal class type derived

from SystemException (for built-in CORBA exceptions) or

UserException (for the custom exception types) - both are

derived from the standard ObjectPascal Exception type,

by the way. For the above definition, the original

VisiBroker ®

10

IDL2PAS generated the following CORBA custom

exception class inside the DiarySrv_c.pas file:

 type

 EMeetingImpossible = class(UserException)

 private

 FReason : AnsiString;

 protected

 function _get_Reason : AnsiString; virtual;

 public

 property Reason : AnsiString read _get_Reason;

 procedure Copy(const _Input : InputStream);

override;

 end;

While the above definition is useful for "catching"

exceptions in a try-except block, it offers no help to

actually create an exception and raise it (which shouldn't

be a surprise, as I've already stated over and over again

that the original VisiBroker 3.3 for Delphi 5 did not

support server-side exceptions). In contrast, the new and

just released version of VisiBroker 3.3 for Delphi 5

generates the following class for the custom CORBA

exception:

 type

 EMeetingImpossible = class(UserException)

 private

 FReason : AnsiString;

 protected

 function _get_Reason : AnsiString; virtual;

 public

 property Reason : AnsiString read _get_Reason;

 constructor Create; overload;

 constructor Create(const Reason : AnsiString);

overload;

 procedure Copy(const _Input : InputStream);

override;

 procedure WriteExceptionInfo(var _Output :

OutputStream); override;

 end;

The most obvious new additions are the two

(overloaded) constructors Create, which enable us to

create this EMeetingImpossible custom exception with or

without an initial Reason string. Once an

EMeetingImpossible exception instance has been created,

we can raise it - at the CORBA server side - just like you'd

raise a regular Delphi exception:

 raise DiarySrv.EMeetingImpossible('Exception raised by

Delphi 5');

Once the CORBA server raises this exception, it will not

be handled by the CORBA server application itself.

Instead, the VisiBroker 3.3 ORB will receive this

exception, marshall it into a native CORBA exception

(including the fields inside the exception struct), and pass

it onto the CORBA network. At the client side, the

CORBA exception will be marshalled back into an

EMeetingImpossible CORBA custom exception and

actually raised (at the point where the client made the

call to the server method that caused the exception to be

raised in the first place).

In short, handling CORBA exceptions is hardly any

different from handling regular ObjectPascal exceptions:

 uses

 CORBA, OrbPas30, DiarySrv_i, DiarySrv_c;

 procedure TCorbaDiaryClient.IDL2PAS(Sender:

TObject);

 var

 CorbaDiaryServer: ICorbaDiaryServer;

 DateTime: TDateTime;

 begin

 Server := TICorbaDiaryServerHelper.Bind;

 DateTime := TDateTime.Create(200009,13);

 try

 Server.Meeting('Micha, Rick, Arnim',DateTime,75);

 except

 on E: EMeetingImpossible do

 ShowMessage(E.Reason)

 end;

VisiBroker ®

11

 DateTime.Free;

 CorbaDiaryServer := nil

 end;

CORBA Server Skeletons

Apart from generating exception types that can be used

for server-side exception raising, the IDL2PAS that comes

with new edition of VisiBroker 3.3 for Delphi 5 also

generates true Server Skeleton code, generating both an

DiarySrv_s.pas and DiarySrv_impl.pas unit (as we'll

explore in detail during the paper). This last feature truly

makes the Type Library Editor and Import Unit obsolete

for CORBA develoment using Delphi (once the new

VisiBroker 3.3 for Delphi 5 is officially available, that is).

Conclusions
Delphi supports CORBA servers with a Type Library

Editor/Import Unit interface as well as using Dynamic

Interface Invocation (DII) or by a true IDL2PAS as part of

VisiBroker 3.3 for Delphi 5. The latest edition of

VisiBroker 3.3 for Delphi 5 supports CORBA structs and

client-side as well as server-side exceptions as a few ofthe

more interesting CORBA features - apart from client stubs

and server skeletons.

And now only one personal wish remains: support for

VisiBroker 4 in Delphi 6 (as the current VisiBroker 3.3

for Delphi 5 is still version 3.3).

Bob Swart (aka Dr.Bob - www.drbob42.com) is an IT

Consultant for the Everest Delphi OplossingsCentrum

(DOC) a PinkRoccade nv Company, and has spoken at

the Inprise/Borland Conferences since 1993. He is a

free-lance technical author for The Delphi Magazine,

UK-BUG Developer's Magazine, Delphi Developer and

wrote chapters for The Revolutionary Guide to Delphi 2

(WROX), Delphi 4 Unleashed, C++Builder 4 Unleashed,

and C++Builder 5 Developer's Guide (SAMS).

©2000 Informant Communications Group, Inc. All Rights

Reserved. Used by permission. Unauthorized distribution

or duplication is strictly prohibited. For more information

on Informant Communications Group, please visit

http://www.DelphiZine.com

Made in Borland®. Copyright © 2001 Borland Software Corporation. All rights
reserved. All Borland brand and product names are trademarks or registered
trademarks of Borland Software Corporation in the United States and other countries.
CORBA is a trademark or registered trademark of Oject Management Group, Inc.
in the U.S. and other countries. All other marks are the property of their respective
owners. 11856

100 Enterprise Way
Scotts Valley, CA 95066-3249
www.borland.com | 831-431-1000

